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We solved the Frenkel-Kontorova model with the potentil)=—\(u—Intfu]—1/2)%/2 exactly. For
given\>0, there exists a positive integgg such that the winding numbes of the minimum enthalpy state
is locked to rational numbers in thigth row of Farey fractions. For fixeéd=p/q, there is a criticah . when
a first order phase transition occurs. This phase transition can be understood as the dissociation of a large
molecule into two smaller ones in a manner dictated by the Farey fracfi®h863-651X%97)16003-3
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The Frenkel-Kontorov&FK) model with the Hamiltonian In this paper, we would like to present yet another type of
first order phase transition by solving exactly an FK model
with a potential which is concave almost everywhere, has
cusps at the bottom of the potential well. The possibility of
particles being pinned at the cusps leads to many striking
whereu, denotes the position of theh particle, describes a results. For given.>0, as the tensile force is varied, and
system of particles moving in an infinite sequence of potenthe winding number of the system is locked dirite setof
tial wellsV(u). In the limit of shallow wells, the particles are rational values. Solitons in the usual sense do not exist. In-
kept at an equilibrium distance by a tensile foree Such  stead, local defects are “fractionally charged.” At critical
models are also widely studied in the context of circle mapwalues of o, the enthalpy for creation of such fractionally
when a certain periodicity exists in the locations of the po-charged defects vanishes. As a result, the minimum enthalpy
tential wells[1]. A stationary configuration in the FK model configurations contain not only configurations with irrational
corresponds to an orbit in the circle map. In the study of FKwinding numbers and rational winding numbers outside of
models, however, one is particularly concerned with thethe finite set mentioned above, but also configurations with-
minimum energy configuratior®,3], in whichH cannot be out a well-defined winding number.
decreased by altering a finite number wf. For smooth For a minimum energy configuration with a given wind-
potentials, the ground state is a “recurrent” minimum en-ing number, as\ is increased, a critical valug, will be
ergy configuration characterized by a winding numbethe  reached, above which the system is no longer stable and a
inverse of which, 1b, gives the average number of particles first order phase transition occurs. The phase transition can
per well. Hence a ground state with rationak p/q [4] be understood as the breaking up of a large molecule into
consists of successive “molecules” that are composed of two smaller ones, in a manner dictated by the Farey frac-
particles andh wells. tions. As a result of the coexistence of two sizes of mol-
It is well known that two types of phase transitions occurecules, the ground state configurations are infinitely degen-
quite generally in FK model45]. The first type is the erate.
commensurate-incommensurate transition which occurs at At \., alocalizedzero frequency phonon mode exists. As
critical values ofc when the enthalpy for the creation of a result, the dissociating molecules can be continuously de-
solitons or antisolitons vanishéS]. The second type occurs formedindividually and the particles in the minimum energy
at critical values of\ characterizing the strength of the po- configuration are “unpinned” in some sense. For a given
tential wells and corresponds, in the language of circle map), the minimum energy configurations of this model can be
to the breaking of an invariant circle into a cantorus. In thecompletely characterized. It is composed either of molecules
ground state with an irrational winding number, the al-  of a single size or of two different sizes, corresponding to
lowed positions of the particles in the potential wells changgwo consecutive Farey fractions, mixed with an arbitrary pro-
from being the entire period in the “unpinned” phase to portion, and arranged in an arbitrary spatial order.
being a cantor set in the “pinned” phase. Correspondingly, The model that we consider has the potential
the hull functionf ,(x), from which one obtains the position
u, of the nth particle byu,=f ,(nw), turns from a smooth A
function into a nowhere-differentiable functi¢g,3,6,7. V(u)=— E(u— Inffu]— %)%, 0<\<4, 2
These two types of phase transitions, however, are not the
only phase transitions that could occur in an FK model. In
particular, when the potential possesses an “internal strucahere Infu] equals the largest integer not larger tharThe
ture,” e.g., having multiple local minima in a period or sub- case ofA<0 has been thoroughly investigated by several
harmonics in a sinusoidal potential, one will encounter dif-authors[9]. The derivative ofV(u) is not well defined at
ferent kinds of first order phase transitions at critical valuegnteger values ofu, so that the equation of motion,
of the height of a local minimurh5,8]. Ups1—2Uq+U,—1=V’(u,), should be replaced by

H({un}>:§[%(un+1—un>2+v<un>], (1)
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A B , A
— 5=V (U)SUpia—2Up+Up =<V (UD) =5, (3) (@) /W\/\/\

whenu,, is an integer and thith particle is pinned at a cusp.

From Eg.(3) we know that the stationary configurations (b)
on the two sides of a cusp need not be symmetrical with
respect to those particles pinned at the cusp. The pinned
particle can thus play the role of the conjunction of two (€)
different stationary configurations, which are not uniquely
determined by each other. Therefore, for a configuration with
Up=0, ug=p, and none of the in-between particles pinned at
the cusps, we wil consider theseq particles, (d)
{Ug,uy, ... ug_1}, @s a ‘p/q section.”

For A>0, we have the following two theorems.

Theorem 1. For a stationary configuration of the FK
model described above, there cannot be Ij consecutive FIG. 1. The ground state configurations far=3/5 at (a)

particles, none pinned_at the cusps, in a minimum eNergy _ /g, (b) and(c) x = /5 (degenerate and(d) y= /4. Note that
configuration fory> xq=m/q, with y=arccos(1-A/2). the configurations iric) and (d) are composed of and 2 sections.
This can be proved by considering the phonon spectrum , = /5, the ground state configuration ih) can be continu-

of theseq_l partiCIeS with all the other partiCIeS f|Xed It 0us|y deformed to(c) The curves describy(u) and the black
also reveals that at= x, there is a phonon mode with zero circles indicate the positions of particles.
frequency for thesg— 1 particles.

Theorem II. In a stationary configuration of the FK for some positive integek, and
model, described above, withhy&#0 and y<xy,, U, iS an _ _ _
increasing function of yfor 0<r<s=q. o PU=pia+L Pg=paetl, Poti=padetr. (7)

This can be proved by observing that sigl>0 for  Forq=q,, « is 1, and the corresponding, q;, andw; are
0<n=gq. Itimplies that thep/q sections are uniquely deter- denoted by, q°, andw?, respectively.
mined forx<xq- From theorems | and I, thesg/q sections withp/q in

For a given winding numbep=p/q and x<xq, @mONg  the g th row of Farey fractions are all the constitutional el-
the stationary configurations with no particles pinned at thements of a minimum energy configuration for

cusps, there exists a uniqecurrentconfiguration, given by Xa.+1<X=<Xq.- In the following, we will show that the

ground state configuration for fixed is composed of the

q-1
u= E vm(q)( Int| (n+m)w+ i w sections, ifw.is in Fhe qcth row of Farey fraction;, or of
m=0 2q w4, and w, sections, ifw lies between two successive frac-
tions w, and w, in the g.th row of Farey fractions.
—Intl mw+ i +1is O>, (4) ' The average energy per particle op&y section, ¥ (w),
2q ’ is given by
. q-1
with v,(q) =tan(y/2)cscQy/2)cos—a/2)x. By theorem I, B ® N 1 1 5
it cannot be a ground state configuration. However, we can (@)= 5 =7 nzo va(@){z ~(no—z = Innw])%
use it to construct another recurrent stationary configuration,
given by A
~8q vo(Q). ®
Uptu, o= P . . .
U= 1 (5) For any three consecutive fractiong <w<w, in the q.th
n 2 ' row of Farey fractions, one can show that
which has one particle pinned at the cusp in each period 0V (w1) + ¥ (wy) — kq¥(w)
(e.g., up=0) and provides the explicit expression for the N x Ox Gix Oy
p/q section defined above. The definitionpﬁf,q‘{ is related = —tanzcot--cot——cot——, 9

to the “Farey fractions[10], defined as the collection of all 822 2 2

irreducible fractions i 0,1], arranged in an ascending order. wherex is defined in Eq(6). The right-hand side is always
Irreducible fractions with denominators less than or equapositive for y<m/max@,qy,0p). This indicates that for
to q, and arranged in ascending order, form thgif'row of o< y<y,, the ground state configuration with winding

Farey fractions.” _ _ _ ~ numberw=p/q is given by the one composed pfq sec-
In the gcth row of Farey fractions, an irreducible fraction tions[see Fig. 1a) for an exampl@

w=p/q has two nearest neighborsp,=p,;/q; and From theorem |, we know that the/q sections will lose

wy=P2/qy, such that their stability for y>xq. At x=xq, there is a zero fre-

quency phonon mode assosiated with/g section with dis-
KP=P1+pP2, kQ=01+02, @1<w<wp;  (6)  placements of each particl¢su,} given by
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n 1.0
5un=asinF, (10
where the amplitude is restricted so that the in-between 24/m
particles, {u;,Up, ... Ug_1}, can only barely touch the
cusps and the equation of motion still holds for them. The
extreme case happens when eithgs= p? or qu=pg. In 05t

either case, sayq0= pJ, we will regard thegd particles from
Uo 10 Ugo—; as apy/q3 section, i.e., a consecutivg) par-

ticles chain with the first particle sitting at the cusp, while the
q? particles fromugg to ug—; as apd/q? section[see Figs.
0.0

1(b) and Xc) for an examplé For a generab=p/q, if we o0 05 p 10

regard ap/qg section as a molecule of sizeg,p), i.e., com-

posed ofg particles ang wells, theny, can be seentobe a  F|G. 2. The domains of stability in the-o plane. The number

critical point of a first order transition when a molecule of in each domain denotes its winding number.

size (@,p) is just about to break up into two molecules of

sizes @1f,p) and @3.p3). respectively. There the three figurations can only be composed of thesections withw in

types of molecules, whose correspondim% w, and wg are theqcth row of Farey fractions in the following way. For an

related as consecutive fractions in tia row of Farey frac-  arbitrary irrational winding numbes or rational but not in

tions, coexist. Moreover, the zero frequency phonon modehe g.th row of Farey fractions, we can find a unique pair of

allows us to continuously deform th@/ g sections into de- consecutive fractions; and w, in the g.th row of Farey

generate configurations. fractions such thatv; <w<<w,. The ground state configura-
It should be noted that, at this critical point, the cusp cantion with this givenw can be constructed with a fraction

barely provide the force to pin the particle at the conjunction”; of particles associated with the, sections and a fraction

betweenp?/qi and p3/q3 sections. Whery increases just ), associated witho, sections such that

abovey,, the p/q section becomes unstable, and any small

perturbation will cause one more particle to roll down to the 1t/ =1, 101+ 0= o, (12)

cusp in each period, resulting 'm‘} and wg sections. There-

fore, the molecules of sizeg(p) completely dissociate, and Moreover, the average energy per particle of this ground

the ground state now is a mixture @f andw sections with  state configuration is given by

the right proportion[see Fig. 1d) for an exampl¢ One

should note that there is a great deal of degeneracy due to the Wy—® .

arbitrary ordering of these two kinds of sections. Vo(w)= V(wq)+ V(wy). (12
From Eq.(9), we know that premature dissociations of @2 W1 @1

stable molecules into other kinds of molecules always cost ) o ] )

energy. The ground state configuration is thus described by Bauation(9) indicates that¥¢(w) is a convex function of

w

mixture of w; and w, sections fory> x.

w2

When yconinues o ncease and _reaches, AING o temaung e parle fom the ystem i
—_ 0 A0\ _ i o 1 W2 2 W1 ) :
Xq__W/m%X(q(l)’qg)_mm(thl)’_X“g)’ -SayA/-q_quy the molecule can be seen from,p,(1l/w,— llw,)=1. Starting from pure
of size ;,p;) starts to dissociate into even smaller mol- . sections, i.e., the ground state configuration with winding
ecules of sizes 3,p3) and @J—q3.p?—p3). Note that nimberw,, we can approach the ground state configuration
(p?—-pY)/(al—ad), pY/qa, andpd/qg; are consecutive frac- with winding numberw, by adding particles one by one.
tions in the — 1)th row of Farey fractions. It follows that Solitons and antisolitons in the usual sense of local “de-
the ground state configuration with a fixed winding numberfects” do not exist. Efforts to create them merely induce
must be composed of no more than two kinds of sectiongransitions betweem,; and w, sections. If we insist on call-
with fractions consecutive in the.th row of Farey fractions ing an w, section in a background ab, sections a defect,
for m/(q.+1)<x=m/q.. The dissociating process contin- this defect will carry a fractional charge. A general
ues until all the particles are located at the cusps. This occuliginimum energy configuration may contain an arbitrary
at y> /2. L number of such defects with an arbitrary spatial arrangement.
It is interesting to observe that foy,<x<xq, even Up to now, we have been discussing the ground state
thoughp/q sections no longer describe the ground state coneonfiguration for givenw as y is varied. Introducing the
figuration, it continues to evolve as an unstable configurationensile force term- o into Eq.(12), we obtain the enthalpy
until xy reachesy,. Hence molecules of sizeg(p) may be of this system. By minimizing this enthalpy with respect to
regarded as a resonance state of two smaller molecules @f, we obtain the phase diagram in tRe- o plane, as shown
sizes 9,p)) and @3,p5) when y lies in the interval in Fig. 2. One can see that there exist triple points at
(Xq:Xq)- Xq=/q, for eachq, where three types of molecules co-
In summary, for giveny, there exists a positive integer exist. Fory<y, the lowest enthalpy configuration is locked
g. such thatw/(q.+1)<y<w/q.. The ground state con- to w=p/q for
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V(w)—V(w,) V(w,)—¥(w) of the lowest enthalpy configuration is not uniquely speci-
P sos o (13 fied, showing that an important result proved by Aub8y
for smooth potentials does not apply in the present case.
wherew;<w<w, are consecutive fractions in thigth row In conclusion, we have shown that the solvable FK model
of Farey fractions withyq +1<x<xq. Whenx=yxq, the considered in this work illustrates some important physics
step shrinks to a point, and we have accompanying a first order phase transition. In particular, we

demonstrate explicity how the Farey fractions dictate the
Y(0)=¥(w) V(wy)-¥(0) 14 structure of these phase transitions. Even though the model is
7= w—w; w,—w ( one dimensional and the potential is not smooth, the under-

lying physics could very well be realized in nature.
which gives the equations for the triple point. In general,
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