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Farey fractions and the Frenkel-Kontorova model
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We solved the Frenkel-Kontorova model with the potentialV(u)52l(u2Int@u#21/2)2/2 exactly. For
givenl.0, there exists a positive integerqc such that the winding numberv of the minimum enthalpy state
is locked to rational numbers in theqcth row of Farey fractions. For fixedv5p/q, there is a criticallc when
a first order phase transition occurs. This phase transition can be understood as the dissociation of a large
molecule into two smaller ones in a manner dictated by the Farey fractions.@S1063-651X~97!16003-2#

PACS number~s!: 64.60.2i, 31.15.Qg, 03.20.1i, 05.45.1b
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The Frenkel-Kontorova~FK! model with the Hamiltonian

H~$un%!5(
n

@ 1
2 ~un112un!

21V~un!#, ~1!

whereun denotes the position of thenth particle, describes a
system of particles moving in an infinite sequence of pot
tial wellsV(u). In the limit of shallow wells, the particles ar
kept at an equilibrium distance by a tensile forces. Such
models are also widely studied in the context of circle ma
when a certain periodicity exists in the locations of the p
tential wells@1#. A stationary configuration in the FK mode
corresponds to an orbit in the circle map. In the study of
models, however, one is particularly concerned with
minimum energy configurations@2,3#, in whichH cannot be
decreased by altering a finite number ofun . For smooth
potentials, the ground state is a ‘‘recurrent’’ minimum e
ergy configuration characterized by a winding numberv, the
inverse of which, 1/v, gives the average number of particl
per well. Hence a ground state with rationalv5p/q @4#
consists of successive ‘‘molecules’’ that are composed oq
particles andp wells.

It is well known that two types of phase transitions occ
quite generally in FK models@5#. The first type is the
commensurate-incommensurate transition which occur
critical values ofs when the enthalpy for the creation o
solitons or antisolitons vanishes@5#. The second type occur
at critical values ofl characterizing the strength of the p
tential wells and corresponds, in the language of circle m
to the breaking of an invariant circle into a cantorus. In t
ground state with an irrational winding numberv, the al-
lowed positions of the particles in the potential wells chan
from being the entire period in the ‘‘unpinned’’ phase
being a cantor set in the ‘‘pinned’’ phase. Corresponding
the hull functionf v(x), from which one obtains the positio
un of the nth particle byun5 f v(nv), turns from a smooth
function into a nowhere-differentiable function@2,3,6,7#.

These two types of phase transitions, however, are no
only phase transitions that could occur in an FK model.
particular, when the potential possesses an ‘‘internal st
ture,’’ e.g., having multiple local minima in a period or su
harmonics in a sinusoidal potential, one will encounter d
ferent kinds of first order phase transitions at critical valu
of the height of a local minimum@5,8#.
551063-651X/97/55~3!/2628~4!/$10.00
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In this paper, we would like to present yet another type
first order phase transition by solving exactly an FK mod
with a potential which is concave almost everywhere, h
cusps at the bottom of the potential well. The possibility
particles being pinned at the cusps leads to many strik
results. For givenl.0, as the tensile forces is varied, and
the winding number of the system is locked at afinite setof
rational values. Solitons in the usual sense do not exist.
stead, local defects are ‘‘fractionally charged.’’ At critic
values ofs, the enthalpy for creation of such fractional
charged defects vanishes. As a result, the minimum enth
configurations contain not only configurations with irration
winding numbers and rational winding numbers outside
the finite set mentioned above, but also configurations w
out a well-defined winding number.

For a minimum energy configuration with a given win
ing number, asl is increased, a critical valuelc will be
reached, above which the system is no longer stable an
first order phase transition occurs. The phase transition
be understood as the breaking up of a large molecule
two smaller ones, in a manner dictated by the Farey fr
tions. As a result of the coexistence of two sizes of m
ecules, the ground state configurations are infinitely deg
erate.

At lc , a localizedzero frequency phonon mode exists. A
a result, the dissociating molecules can be continuously
formedindividually and the particles in the minimum energ
configuration are ‘‘unpinned’’ in some sense. For a giv
l, the minimum energy configurations of this model can
completely characterized. It is composed either of molecu
of a single size or of two different sizes, corresponding
two consecutive Farey fractions, mixed with an arbitrary p
portion, and arranged in an arbitrary spatial order.

The model that we consider has the potential

V~u!52
l

2
~u2Int@u#2 1

2 !2, 0,l,4, ~2!

where Int@u# equals the largest integer not larger thanu. The
case ofl,0 has been thoroughly investigated by seve
authors@9#. The derivative ofV(u) is not well defined at
integer values ofu, so that the equation of motion
un1122un1un215V8(un), should be replaced by
2628 © 1997 The American Physical Society
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2
l

2
5V8~un

2!<un1122un1un21<V8~un
1!5

l

2
, ~3!

whenun is an integer and thenth particle is pinned at a cusp
From Eq.~3! we know that the stationary configuration

on the two sides of a cusp need not be symmetrical w
respect to those particles pinned at the cusp. The pin
particle can thus play the role of the conjunction of tw
different stationary configurations, which are not unique
determined by each other. Therefore, for a configuration w
u050, uq5p, and none of the in-between particles pinned
the cusps, we will consider theseq particles,
$u0 ,u1 , . . . ,uq21%, as a ‘‘p/q section.’’

For l.0, we have the following two theorems.
Theorem I. For a stationary configuration of the F

model described above, there cannot be q21 consecutive
particles, none pinned at the cusps, in a minimum ene
configuration forx.xq[p/q, with x[arccos(12l/2).

This can be proved by considering the phonon spect
of theseq21 particles with all the other particles fixed.
also reveals that atx5xq , there is a phonon mode with zer
frequency for theseq21 particles.

Theorem II. In a stationary configuration of the F
model, described above, with u050 and x,xq , ur is an
increasing function of us for 0,r,s<q.

This can be proved by observing that sin(nx).0 for
0,n<q. It implies that thep/q sections are uniquely dete
mined forx,xq .

For a given winding numberv5p/q andx,xq , among
the stationary configurations with no particles pinned at
cusps, there exists a uniquerecurrentconfiguration, given by

un85 (
m50

q21

nm~q!S IntF ~n1m!v1
1

2qG
2IntFmv1

1

2qG1 1
2dm,0D , ~4!

with nn(q)5tan(x/2)csc(qx/2)cos(n2q/2)x. By theorem I,
it cannot be a ground state configuration. However, we
use it to construct another recurrent stationary configurat
given by

un5
un81un1q

1
08 2p1

0

2
, ~5!

which has one particle pinned at the cusp in each pe
~e.g., u050) and provides the explicit expression for th
p/q section defined above. The definition ofp1

0 ,q1
0 is related

to the ‘‘Farey fractions’’@10#, defined as the collection of a
irreducible fractions in@0,1#, arranged in an ascending orde
Irreducible fractions with denominators less than or eq
to q, and arranged in ascending order, form the ‘‘qth row of
Farey fractions.’’

In theqcth row of Farey fractions, an irreducible fractio
v5p/q has two nearest neighbors,v15p1 /q1 and
v25p2 /q2, such that

kp5p11p2 , kq5q11q2 , v1,v,v2 ~6!
h
ed

h
t

y

m

e

n
n,

d

l

for some positive integerk, and

pq15p1q11, p2q5pq211, p2q15p1q21k. ~7!

For q5qc , k is 1, and the correspondingpi , qi , andv i are
denoted bypi

0 , qi
0 , andv i

0 , respectively.
From theorems I and II, thesep/q sections withp/q in

the qcth row of Farey fractions are all the constitutional e
ements of a minimum energy configuration f
xqc11,x<xqc

. In the following, we will show that the

ground state configuration for fixedv is composed of the
v sections, ifv is in theqcth row of Farey fractions, or of
v1 andv2 sections, ifv lies between two successive fra
tionsv1 andv2 in theqcth row of Farey fractions.

The average energy per particle of ap/q section,C(v),
is given by

C~v!5
v2

2
2

l

4 (
n50

q21

nn~q!$ 1
42~nv2 1

22Int@nv#!2%

2
l

8q
n0~q!. ~8!

For any three consecutive fractionsv1,v,v2 in the qcth
row of Farey fractions, one can show that

q1C~v1!1q2C~v2!2kqC~v!

5
l

8
tan

x

2
cot

qx

2
cot

q1x

2
cot

q2x

2
, ~9!

wherek is defined in Eq.~6!. The right-hand side is alway
positive for x,p/max(q,q1,q2). This indicates that for
0,x,xq , the ground state configuration with windin
numberv5p/q is given by the one composed ofp/q sec-
tions @see Fig. 1~a! for an example#.

From theorem I, we know that thep/q sections will lose
their stability for x.xq . At x5xq , there is a zero fre-
quency phonon mode assosiated with ap/q section with dis-
placements of each particles$dun% given by

FIG. 1. The ground state configurations forv53/5 at ~a!
x5p/8, ~b! and~c! x5p/5 ~degenerate!, and~d! x5p/4. Note that
the configurations in~c! and ~d! are composed of12 and

2
3 sections.

At x5p/5, the ground state configuration in~b! can be continu-
ously deformed to~c!. The curves describeV(u) and the black
circles indicate the positions of particles.
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dun5asin
np

q
, ~10!

where the amplitudea is restricted so that the in-betwee
particles, $u1 ,u2 , . . . ,uq21%, can only barely touch the
cusps and the equation of motion still holds for them. T
extreme case happens when eitheruq

1
05p1

0 or uq
2
05p2

0. In

either case, sayuq
2
05p2

0, we will regard theq2
0 particles from

u0 to uq
2
021 as ap2

0/q2
0 section, i.e., a consecutiveq2

0 par-

ticles chain with the first particle sitting at the cusp, while t
q1
0 particles fromuq

2
0 to uq21 as ap1

0/q1
0 section@see Figs.

1~b! and 1~c! for an example#. For a generalv5p/q, if we
regard ap/q section as a molecule of size (q,p), i.e., com-
posed ofq particles andp wells, thenxq can be seen to be
critical point of a first order transition when a molecule
size (q,p) is just about to break up into two molecules
sizes (q1

0 ,p1
0) and (q2

0 ,p2
0), respectively. There the thre

types of molecules, whose correspondingv1
0, v, andv2

0 are
related as consecutive fractions in theqth row of Farey frac-
tions, coexist. Moreover, the zero frequency phonon m
allows us to continuously deform thep/q sections into de-
generate configurations.

It should be noted that, at this critical point, the cusp c
barely provide the force to pin the particle at the conjunct
betweenp1

0/q1
0 and p2

0/q2
0 sections. Whenx increases just

abovexq , thep/q section becomes unstable, and any sm
perturbation will cause one more particle to roll down to t
cusp in each period, resulting inv1

0 andv2
0 sections. There-

fore, the molecules of size (q,p) completely dissociate, an
the ground state now is a mixture ofv1

0 andv2
0 sections with

the right proportion@see Fig. 1~d! for an example#. One
should note that there is a great deal of degeneracy due t
arbitrary ordering of these two kinds of sections.

From Eq. ~9!, we know that premature dissociations
stable molecules into other kinds of molecules always c
energy. The ground state configuration is thus described
mixture ofv1

0 andv2
0 sections forx.xq .

When x continues to increase and reach
x̄q[p/max(q1

0,q2
0)5min(xq

1
0,xq

2
0), sayx̄q5xq

1
0, the molecule

of size (q1
0 ,p1

0) starts to dissociate into even smaller mo
ecules of sizes (q2

0 ,p2
0) and (q1

02q2
0 ,p1

02p2
0). Note that

(p1
02p2

0)/(q1
02q2

0), p1
0/q1

0, andp2
0/q2

0 are consecutive frac
tions in the (q21)th row of Farey fractions. It follows tha
the ground state configuration with a fixed winding numb
must be composed of no more than two kinds of secti
with fractions consecutive in theqcth row of Farey fractions
for p/(qc11),x<p/qc . The dissociating process contin
ues until all the particles are located at the cusps. This oc
at x.p/2.

It is interesting to observe that forxq,x,x̄q , even
thoughp/q sections no longer describe the ground state c
figuration, it continues to evolve as an unstable configura
until x reachesx̄q . Hence molecules of size (q,p) may be
regarded as a resonance state of two smaller molecule
sizes (q1

0 ,p1
0) and (q2

0 ,p2
0) when x lies in the interval

(xq ,x̄q).
In summary, for givenx, there exists a positive intege

qc such thatp/(qc11),x<p/qc . The ground state con
e

e

n
n

ll

the

st
a

r
s

rs

-
n

of

figurations can only be composed of thev sections withv in
theqcth row of Farey fractions in the following way. For a
arbitrary irrational winding numberv or rational but not in
theqcth row of Farey fractions, we can find a unique pair
consecutive fractionsv1 andv2 in the qcth row of Farey
fractions such thatv1,v,v2. The ground state configura
tion with this givenv can be constructed with a fractio
f 1 of particles associated with thev1 sections and a fraction
f 2 associated withv2 sections such that

f 11f 251, f 1v11f 2v25v. ~11!

Moreover, the average energy per particle of this grou
state configuration is given by

Ce~v!5
v22v

v22v1
C~v1!1

v2v1

v22v1
C~v2!. ~12!

Equation~9! indicates thatCe(v) is a convex function of
v.

Adding or removing one particle from the system w
turn p1 v2 sections intop2 v1 sections, or vice versa. Thi
can be seen fromp1p2(1/v121/v2)51. Starting from pure
v2 sections, i.e., the ground state configuration with wind
numberv2, we can approach the ground state configurat
with winding numberv1 by adding particles one by one
Solitons and antisolitons in the usual sense of local ‘‘d
fects’’ do not exist. Efforts to create them merely indu
transitions betweenv1 andv2 sections. If we insist on call-
ing anv1 section in a background ofv2 sections a defect
this defect will carry a fractional charge 1/p2. A general
minimum energy configuration may contain an arbitra
number of such defects with an arbitrary spatial arrangem

Up to now, we have been discussing the ground s
configuration for givenv as x is varied. Introducing the
tensile force term2sv into Eq.~12!, we obtain the enthalpy
of this system. By minimizing this enthalpy with respect
v, we obtain the phase diagram in thex2s plane, as shown
in Fig. 2. One can see that there exist triple points
xq5p/q, for eachq, where three types of molecules co
exist. Forx,xq , the lowest enthalpy configuration is locke
to v5p/q for

FIG. 2. The domains of stability in thex-s plane. The number
in each domain denotes its winding number.
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C~v!2C~v1!

v2v1
<s<

C~v2!2C~v!

v22v
, ~13!

wherev1,v,v2 are consecutive fractions in theqcth row
of Farey fractions withxqc11,x<xqc

. When x5xq , the
step shrinks to a point, and we have

s5
C~v!2C~v1!

v2v1
5

C~v2!2C~v!

v22v
, ~14!

which gives the equations for the triple point. In gener
for two consecutive Farey fractionsv1 and v2,
s5@C(v2)2C(v1)#/(v22v1) gives the equation for the
coexistent curve of the two phases corresponding to m
ecules of sizes (q1 ,p1) and (q2 ,p2). Different proportions of
these two kinds of molecules will lead to varieties of co
figurations with the same average enthalpy per particle
different winding numbers. Therefore, the winding numb
-

,

l-

-
ut
r

of the lowest enthalpy configuration is not uniquely spe
fied, showing that an important result proved by Aubry@3#
for smooth potentials does not apply in the present case

In conclusion, we have shown that the solvable FK mo
considered in this work illustrates some important phys
accompanying a first order phase transition. In particular,
demonstrate explicitly how the Farey fractions dictate
structure of these phase transitions. Even though the mod
one dimensional and the potential is not smooth, the und
lying physics could very well be realized in nature.
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